

HDV-003-1163002 Seat No. _____

M. Sc. (Mathematics) (Sem. III) (CBCS) Examination

November / December - 2017

MATH CMT - 3002 : Functional Analysis

Faculty Code: 003

Subject Code: 1163002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) Answer all questions.

- (2) Each question carries 14 marks.
- (3) The figures to the right indicate marks allotted to the question.
- 1 All are compulsory: (Each question carries 2 marks) 14
 - (a) True or false? Justify $(l^{\infty}, \|\cdot\|_{\infty})$ has a Schauder basis.
 - (b) Define weak convergence, strong convergence in a n.l. Space.
 - (c) Define Banach Space.
 - (d) True or false? Justify Dual of a Hilbert space is a Hilbert space.
 - (e) Give an example of a space that is not Banach space over IK.
 - (f) True or false? Justify Every Separable Hilbert space is isomorphic to l^2 .
 - (g) Define equivalent norms on a n.l. space.
- 2 Answer Any **Two**:

14 7

(A) State and Prove the necessary and sufficient condition for a vector subspace of a Banach space to be a Banach space. True or false? Justify. $(C_0, \|\cdot\|_{\infty})$ is a Banach space.

1

HDV-003-1163002]

[Contd....

	(B)	State, without proof, Baire's theorem. Prove that a	7
		Banach space cannot have a countably infinite Hamel basis.	
	(C)	State and prove Riesz lemma.	7
3	All	are compulsory:	14
	(A)	For a n.l. space X over IK, prove that the dual	7
		space X^I is separable $\Rightarrow X$ is separable.	
	(B)	Give an example to show that a metric on a vector	7
		space x need not be induced by a norm on x , with justification.	
\mathbf{OR}			
3	All	are compulsory:	14
	(A)	Let X , Y be a n.l. space over IK and $\ \cdot\ $ be the norm on B $(X.Y)$ defined by	7
		$ T = \inf \{c > 0 / Tx \le c x , \forall x \in X\}.$	
		Prove that $ T = \sup \left\{ \frac{ T_x }{ x }, 0 \neq x \in X \right\} = \sup \left\{ Tx , x = 1 \right\}.$	
	(B)	Define Canonical mapping C from a n.l. space X to X'' . Prove that $C: X \to X''$ is an isometry.	7
4	Ans	wer any two :	14
	(A)	State, without proof, projection theorem. If H is a	7
		Hilbert space and M is a non empty subset of H then prove that $\overline{span M} = M^{\perp \perp}$.	
	(B)	State and prove characterization of the Hyperspace in a n.l. Space.	7
	(C)	State and prove closed graph theorem.	7

2

[Contd....

HDV-003-1163002]

- 5 All are compulsory: (Each question carries 2 marks)
- 14

- (A) State Hahn Banach Theorem.
- (B) Define Hyper plane and Hyperspace and with an example.
- (C) Give an example of a n.l. space which is not complete.
- (D) If Y is closed subspace of a n.l. space X then give the definition of the induced norm on the quotient space X/Y.
- (E) What is the meaning of the statement that the dual X' of X separates the points of X.
- (F) Give the definitions of (1) Convergent series and(2) The absolute convergent series.
- (G) Write the statement of Zorn's lemma and define sub linear functional.